skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Muthukumar, Kamalambika"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2026
  2. Amorphous molybdenum sulfide (a-MoS3) is a promising non-precious electrocatalyst for hydrogen evolution reaction owing to the abundant defective active sites. Here in, we show a rapid microwave-assisted synthesis method to produce a-MoS3 catalysts on reduced graphene oxide (rGO) substrates. The a-MoS3 reported in this study comprise of two possible 1D chain-like structures, i.e., with molybdenum (IV) in Weber’s model and molybdenum (V) in Hibble’s model, unlike the polymeric cluster type a-MoS3 structures reported in literature. Thermal annealing of the microwave-prepared a-MoS3 produced a family of defect-engineered MoSx/rGO hybrids, from a-MoS3 to crystalline MoS2, which showed tunable HER activities. XPS analysis provided in-depth understanding of the compositional changes in MoSx/rGO with thermal annealing. The a-MoS3/rGO 250 (annealed at 250 ◦C) exhibited the highest HER catalytic activity among all the MoSx/rGO hybrids, with an overpotential of 208 mV at 10 mA/cm2, a low Tafel slope of 52 mV/decade, a high double layer capacitance of 3.7 mF/cm2 and a high TOF value of 0.43 H2/s per site at the HER overpotential of 208 mV. The excellent HER activity is attributed to both MoV and sulfur active sites. This study provides a controllable, scalable and rapid synthesis method to produce 1D chain-like a-MoS3 structures for HER electrocatalysis. 
    more » « less
  3. This study reports the preparation of a set of hybrid materials consisting of molybdenum disulfide (MoS 2 ) nanopatches on reduced graphene oxide (rGO) nanosheets by microwave specific heating of graphene oxide and molecular molybdenum precursors followed by thermal annealing in 3% H 2 and 97% Ar. The microwave process converts graphene oxide to ordered rGO nanosheets that are sandwiched between uniform thin layers of amorphous molybdenum trisulfide (MoS 3 ). The subsequent thermal annealing converts the intermediate layers into MoS 2 nanopatches with two-dimensional layered structures whose defect density is tunable by controlling the annealing temperature at 250, 325 and 600 °C, respectively. All three MoS 2 /rGO samples and the MoS 3 /rGO intermediate after the microwave step show a high Li-ion intercalation capacity in the initial 10 cycles (over 519 mA h g MoSx −1 , ∼3.1 Li + ions per MoS 2 ) which is attributed to the small MoS 2 nanopatches in the MoS 2 /rGO hybrids while the effect of further S-rich defects is insignificant. In contrast, the Zn-ion storage properties strongly depend on the defects in the MoS 2 nanopatches. The highly defective MoS 2 /rGO hybrid prepared by annealing at 250 °C shows the highest initial Zn-ion storage capacity (∼300 mA h g MoSx −1 ) and close to 100% coulombic efficiency, which is dominated by pseudocapacitive surface reactions at the edges or defects in the MoS 2 nanopatches. The fast fading in the initial cycles can be mitigated by applying higher charge/discharge currents or extended cycles. This study validates that defect engineering is critical for improving Zn-ion storage. 
    more » « less